

E

10 Utility Programs

This chapter describes the utility programs that accompany EnSight. The Server
utility programs are located in ENSIGHT_HOME/server/utilities and the Client
utility programs are located in ENSIGHT_HOME/client/utilities on the EnSight
release tape or CD.

Utility programs are supplied on an “as is” basis and are unsupported. CEI will,
however, try to assist in problem resolution.

Each utility program is presented below and accompanied with a brief overview
that describes the function of the utility.
nSight 6.0 User Manual 10-1

10.1 EnSight5 Programs

10-2

10.1 EnSight5 Programs

EnSight5 ASCII-to-Binary File Converter (asciitobin5)

The asciitobin5 program runs on a Server host system to read ASCII EnSight 5.x files and
convert them to C binary format files, which read much faster than ASCII files. Use this
utility to facilitate the reading of large data files, especially when these files are read
repeatedly.

EnSight Data Translation Library

The EnSight interface library (“libeio”) provides a C API for reading and writing both the
ASCII and the binary versions of the EnSight 5 format for geometry and results data. You
can use it to simplify the process of writing translators or output modules for the EnSight
format, as well as utilities that operate on the format.

Before using this library, you should be reasonably familiar with the EnSight 5 format
described in section 2.5 of the EnSight User Manual.

The library (C source) can be found in the $ENSIGHT6_HOME/server/translators/libeio
directory in your EnSight distribution. A translator for the unstructured “FAST” format
that makes use of libeio can be found in $ENSIGHT6_HOME/server/translators/unf.

EnSight provides both ASCII and binary versions of its native data format. There are
really only two reasons to use the ASCII format: if you need to actually look at the files or
if you need to move a dataset to a computer system with a different binary format for
numbers. Always use the binary format if possible. Not only does the I/O occur much
faster, but the files will be smaller and will load into EnSight much faster as well.

You specify ASCII or binary output via the SetFileType() call. By default, output is set
to binary.

Building the library
This library has been compiled and tested (to a limited extent) on the following systems:

SGI IRIX 4.0.5
SGI IRIX 5.3
HPUX 9.0.5
Solaris 2.3

1. Edit the Makefile for your system (as shipped, it is configured for IRIX).

2. To build the library, type “make”. If you are porting the library to a new platform or
operating system release, you may have to make some minor modifications to the Makefile
and/or the source code.

3. To build executables that call routines in the library either include “.../libeio.a” in
your final link command or add the “-leio” option to the link command (which assumes
the linker knows where to find the library).

 Warnings
The following caveats apply to this initial release of libeio:

1. Error checking is a little skimpy at this point. It needs to be improved, especially for the
input routines. In general, the input routines assume that a correctly formatted EnSight
file is being read.

2. The input routines will only handle C binary files – not Fortran!
EnSight 6.0 User Manual

10.1 EnSight5 Programs

E

 Hints When reading EnSight format files into EnSight, you have the option of whether to load
all parts, all but the first part, or the first part only. You can sometimes take advantage of
this and save loading time as well as memory on the EnSight Client if you can load all but
the first part. In many 3D applications (particularly CFD) one part can contain all 3D
elements of the computational domain. Other parts typically contain boundary or shell
elements. Since you don’t really need to look at a graphical representation of the
computational domain (if you have a boundary representation), you can avoid its initial
load and display on the Client by having the 3D computational domain part as the first part
in the EnSight geometry file and using the “all but the first part” load option in EnSight.

Output Routines

void SetFileType(int type)

SetFileType() sets the output type for subsequent calls to I/O routines. The type
parameter is either ASCII or BINARY (as defined in eio.h). NOTE: the ReadGeometry()
and ReadParticleGeometry() input routines will reset the type based on the type of the
file last read.

The output routines are divided into two types: those that operate on the EnSight-based
data structures (defined in eio.h) and those that accept raw arrays for output. The first four
routines operate on the defined data structures:

int WriteGeometry(char *filename,Geometry *geo)
int WriteParticleGeometry(char *filename,ParticleGeometry *geo);
int WriteScalar(char *filename,Scalar *scl)
int WriteVector(char *filename,Vector *vec)

 These routines take a completed structure for the corresponding item and write it to the file
specified by “filename”. See the definitions for Geometry, ParticleGeometry, Scalar,
and Vector in eio.h for more info.

The remaining routines accept raw arrays for output.

int WriteGeoHeader(char *filename,char *des1,char *des2,int nodeid,int elemid)

WriteGeoHeader() begins the process of geometry file output. The des1 and des2
parameters are description lines for the model. The nodeid and elemid parameters
should be set to one of the defined constants (e.g. ID_OFF or ID_ASSIGN) in eio.h.
WriteGeoHeader() should be followed by WriteGeoCoords().

int WriteParticleGeoHeader(char *filename, char *des)

WriteParticleGeoHeader() begins the process of particle geometry file output.
Although particle files have two description lines in the header, the second one is
ALWAYS “particle coordinates”. WriteParticleGeoHeader() should be followed by a
call to WriteGeoCoords(). Note that particle files must always have coordinate IDs!

void WriteGeoCoords(int partcoords, int num, int *id, float *coords)

WriteGeoCoords() appends coordinates to the geometry file opened by the previous call
to WriteGeoHeader(). If the nodeid parameter to WriteGeoHeader() was either
ID_GIVEN or ID_IGNORE then the id pointer must point to a list of num integers. The
coords parameter must point to a list of 3*num floats in order
X1,Y1,Z1,X2,Y2,Z2,...,Xn,Yn,Zn. WriteGeoCoords() should be followed by a call to
nSight 6.0 User Manual 10-3

10.1 EnSight5 Programs

10-4

WriteGeoPart().
WriteGeoCoords() is also used to output particle coordinates (e.g. following a call to
WriteParticleGeoHeader()). Be sure to set the partcoords parameter to True when
writing particle coordinates!

void WriteGeoPart(char *line)

WriteGeoPart() begins the process of part definition. A part header will be output to the
file opened in the previous call to WriteGeoHeader(). WriteGeoPart() must be
followed by one or more calls to WriteGeoElem().

void WriteGeoElem(int elemtype, int num, int *id, int *nd)

WriteGeoElem() outputs a set of elements of the same type to the current part (as defined
by the most recent call to WriteGeoPart()). The elemtype parameter must be one of the
types defined in eio.h (e.g. HEXA8 or QUAD4). num is the number of elements to output. If
the elemid parameter to WriteGeoHeader() was either ID_GIVEN or ID_IGNORE then the
id pointer must point to a list of num integers containing element ID numbers. The nd
pointer points to a list of N*num integers, where N is the number of nodes in the particular
type of element (e.g. 8 for a HEXA8 type). Node ordering is defined section 3.8.

You can call WriteGeoElem() as many times as you like between calls to
WriteGeoPart() to define different element sets belonging to a particular part.

int WriteRawScalar(char *filename, char *descrip, char *varname, int num, float *data)

WriteRawScalar() writes a scalar variable to the file named filename. The varname
parameter will be saved and used in a subsequent call to WriteResults(). num is the
number of values. data is a pointer to num floating point values. The values must be
ordered the same as the coordinates in the corresponding geometry file.

int WriteRawVector(char *filename, char *descrip, char *varname, int num, float *data)

WriteRawVector() writes a vector variable to the file named filename. The varname
parameter will be saved and used in a subsequent call to WriteResults(). num is the
number of values. data is a pointer to 3*num floating point values. The values must be
ordered the same as the coordinates in the corresponding geometry file.

int WriteResults(char *filename, Result *rp)

WriteResults() will output an EnSight “results” file describing a complete geometry
plus results dataset. rp points to a Result structure (defined in eio.h) containing the
desired information.
EnSight 6.0 User Manual

10.1 EnSight5 Programs

E

Input Routines

The input routines read a particular type of EnSight file and load the contents to a structure
defined in eio.h.

Geometry *ReadGeometry(char *filename)

The ReadGeometry() routine reads a complete geometry file and returns the various
components in the Geometry structure. It returns NULL on error. ReadGeometry() will
automatically determine if the file is ASCII or binary and will set the type for subsequent
reads.

ParticleGeometry *ReadParticleGeometry(char *filename)

The ReadParticleGeometry() routine reads a complete particle geometry file and
returns the various components in the ParticleGeometry structure. It returns NULL on
error. ReadParticleGeometry() will automatically determine if the file is ASCII or
binary and will set the type for subsequent reads.

Scalar *ReadScalar(char *filename, int num)

ReadScalar() will read a scalar file and return a pointer to a Scalar structure (or NULL on
error). num must equal the number of values to read. ReadScalar() will assume the file
type (ASCII or binary) is the same as that determined in ReadGeometry() (but you can
override with a call to SetFileType()).

Vector *ReadVector(char *filename, int num)

ReadVector() will read a vector file and return a pointer to a Vector structure (or NULL
on error). num must equal the number of values (nodes) to read, i.e. there should be 3*num
floats in the file. ReadVector() will assume the file type (ASCII or binary) is the same as
that determined in ReadGeometry() (but you can override with a call to SetFileType()).

Result *ReadResults(char *filename)

ReadResults() will read an EnSight results file and return the information in an allocated
Result structure.
nSight 6.0 User Manual 10-5

10.2 MPGS4 Programs

10-6
10.2 MPGS4 Programs

MPGS4 ASCII-to-Binary File Converter (asciitobin4)

The asciitobin4 program runs on a Server host system to read ASCII MPGS 4 data files
and convert them to binary files, which read much faster than ASCII files. Use this utility
to facilitate the reading of large data files, especially when these files are read repeatedly.
See also asciitobin5 above.

MPGS4 File Concatenater-Transformer

The programs under the cat_transform4 directory run on a Server host system and
perform various concatenation and transformation operations on MPGS 4 dataset files.
For example, the following two utility programs are included in this directory:

cat_mpgs concatenates two or more MPGS 4 data files.

tform_mpgs translates and rotates MPGS 4 data files.

MPGS4 Geometry File Debug Filter (filter4)

The filter4 program runs on a Server host system to read an MPGS 4 geometry file (either
ASCII or binary). After reading the file, you can perform queries to aid in debugging
connectivity information. You are prompted for a solid number, after which filter4 will
print all known information for that solid. If filter4 cannot read the data, there is probably
a problem with the data formatting.

MPGS4 Min-Max Scalar Finder (minmaxs4)

The minmaxs4 program runs on a Server host system to scan a set of MPGS 4 (multiple
time step) scalar files, and print the minimum and maximum scalar information. See also
minmaxv4 below.

MPGS4 Min-Max Vector Finder (minmaxv4)

The minmaxv4 program runs on a Server host system to scan a set of MPGS 4 (multiple
time step) vector files, and print the minimum and maximum vector information. See also
minmaxs4 above.

MPGS4 Structured Mesh Generator (structmesh4)

The structmesh4 program runs on a Server host system, and creates an MPGS 4 geometry
file that contains a 3D (cube) structured mesh.
EnSight 6.0 User Manual

10.3 Movie.BYU Programs

E

10.3 Movie.BYU Programs

Movie.BYU File Polygon Reducer (reducemovie)

The reducemovie program runs on a Server host system to read Movie.BYU geometry,
and output a geometry file with shared face information removed. This program is
especially useful when dealing with geometry files that were created from FEM solid
elements.

Depending on how smart a FEM translator is, the faces shared between two solid elements
might be described twice in the geometry file. If reducemovie finds two faces (polygons in
the Movie.BYU file) that share the same node numbers, both polygons are removed
because they are both interior faces and should not be visible to the observer (unless the
geometry is clipped open using the Z-clipping planes).

Running a FEM geometry that has been created using solid elements through this filtering
program can reduce the number of polygons in the model dramatically, thus speeding
postprocessing.
nSight 6.0 User Manual 10-7

10.4 Keyboard Macro Maker (macromake)

10-8
10.4 Keyboard Macro Maker (macromake)

The macromake program runs on the Client host system and assigns a keyboard key to a
prerecorded EnSight command file (or files). The macro key code and command file
name(s) are updated in the macro.define file, which stores your macro definitions.

The command file(s) can contain any sequence of valid EnSight commands that will
execute each time the macro key is pressed while running EnSight. You can assign one
command file to a repeatable macro key—the contents of the command file plays as long
as the macro key is depressed. Macros are currently limited to single key definitions.

See: How To Define and Use Macros.
EnSight 6.0 User Manual

	10 Utility Programs
	10.1 EnSight5 Programs
	10.2 MPGS4 Programs
	10.3 Movie.BYU Programs
	10.4 Keyboard Macro Maker (macromake)

